Uniform resolvent estimates for the discrete Schrödinger operator in dimension three

نویسندگان

چکیده

In this note, we prove the uniform resolvent estimate of discrete Schr\"odinger operator with dimension three. To do this, show a Fourier decay surface measure on Fermi surface.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semiclassical resolvent estimates for Schrödinger operators with Coulomb singularities

Consider the Schrödinger operator with semiclassical parameter h, in the limit where h goes to zero. When the involved long-range potential is smooth, it is well known that the boundary values of the operator’s resolvent at a positive energy λ are bounded by O(h−1) if and only if the associated Hamilton flow is non-trapping at energy λ. In the present paper, we extend this result to the case wh...

متن کامل

Uniform Error Estimates of Finite Difference Methods for the Nonlinear Schrödinger Equation with Wave Operator

We establish uniform error estimates of finite difference methods for the nonlinear Schrödinger equation (NLS) perturbed by the wave operator (NLSW) with a perturbation strength described by a dimensionless parameter ε (ε ∈ (0, 1]). When ε → 0+, NLSW collapses to the standard NLS. In the small perturbation parameter regime, i.e., 0 < ε 1, the solution of NLSW is perturbed from that of NLS with ...

متن کامل

Resolvent Estimates for Elliptic Finite Element Operators in One Dimension

We prove the analyticity (uniform in h ) of the semigroups generated on Lp(0, 1), 1 < p < oo , by finite element analogues Ah of a onedimensional second-order elliptic operator A under Dirichlet boundary conditions. This is accomplished by showing the appropriate estimates for the resolvents by means of energy arguments. The results are applied to prove stability and optimal-order error bounds ...

متن کامل

Uniform resolvent estimates for a non-dissipative Helmholtz equation

We study the high frequency limit for a non-dissipative Helmholtz equation. We first prove the absence of eigenvalue on the upper half-plane and close to an energy which satisfies a weak damping assumption on trapped trajectories. Then we generalize to this setting the resolvent estimates of Robert-Tamura and prove the limiting absorption principle. We finally study the semiclassical measures o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of spectral theory

سال: 2021

ISSN: ['1664-039X', '1664-0403']

DOI: https://doi.org/10.4171/jst/387